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Hybrid Acquisition of Direct Sequence CDMA Signals 1 

Venugopal V. Veeravalli 2 and Carl W. Baum 3 

In direct sequence code division multiple access (DS-CDMA) systems, signal acquisition is nec- 
essary before communication can commence. Recent work has shown that the problem of acqui- 
sition may be even more restrictive than the problem of error control in limiting the capacity and 
performance of these systems. Passive matched filters and parallel search schemes have been 
shown to be able to acquire signals rapidly, but they do so at the cost of high or prohibitive 
complexity. In contrast, straight serial search schemes have lower complexity but acquire the 
signal much more slowly. In this paper, we study hybrid active correlation schemes that provide 
flexibility in the trade-off between acquisition speed and complexity. These techniques test several 
phases concurrently and either decide that a particular phase is correct, in which case the decision 
is verified by a binary hypothesis test, or that none of the phases are correct, in which case another 
group of phases is tested. Two new hybrid acquisition schemes are presented; the first is based 
on a fixed-sample-size weighted MAP test, and the second is based on an M-ary sequential hy- 
pothesis test called MSPRT. It is shown that the weighted MAP-based scheme hypothesis test 
called MSPRT. It is shown that the weighted MAP-based scheme outperforms a standard MAP- 
based scheme. It is also shown that considerable performance gain can be obtained using sequen- 
tial testing. In particular, it is shown through numerical examples that MSPRT-based schemes are 
several times faster than corresponding fixed-sample-size schemes. 

KEY WORDS: Hybrid acquisition; CDMA; sequential detection; MSPRT. 

1. I N T R O D U C T I O N  

Acquistion in direct sequence spread-spectrum sys- 
tems can be defined as the process of  coarsely al igning 

the phase, or delay, of  a locally generated despreading 
signal with that of  an incoming (spread) signal. Recent 
work has shown that in direct sequence code division 
multiple access (DS/CDMA) systems including per- 
sonal communica t ion  systems and networks (PCS), the 
problem of  acquisit ion may be even more restrictive on 
system capacity and performance than the problem of  
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error control [1]. For  this reason, the design of efficient 
acquisition schemes is a critical component  in the over- 
all design of  C D M A  systems. 

In general,  the phase of  the incoming  sequence is 
said to be acquired if it is determined to within some 
fraction (typically one-half)  of  a chip duration. A track- 

ing stage can then lock onto the signal with greater ac- 
curacy [2]. There are two basic approaches to acquiring 
the phase. The first is to use a passive matched filter that 
is matched to a section o f  the incoming  sequence;  a peak 
in the output of  the filter determines the phase. 4 A sec- 
ond approach is to use a single correlator or a set of  
correlators to exhaustively test the various possible 
phases of the incoming sequence,  either serially or in 
parallel. Passive matched filter schemes acquire signals 
rapidly, since the t ime taken to cover all possible phases 

An alternative approach is to declare the phase as matched at the first 
moment the output of the filter exceeds a fixed threshold. 
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in the phase uncertainty interval is simply the length of 
the matched section plus the length of the phase uncer- 
tainty interval. However, building matched filters of  ap- 
propriate length for reliable acquisition can be prohibi- 
tively expensive, especially in a low signal-to-noise ratio 
environment (such as would tend to occur in systems 
subject to multiple access interference and fading). For 
this reason, active correlation schemes tend to be more 
practical. 

Among active correlation schemes there are two 
extremes, straight serial search schemes and parallel 
search schemes. Straight serial search schemes use only 
one correlator and check only one phase at a time [2, 
3], whereas parallel search schemes use a large bank of  
correlators to test all possible phases concurrently [4, 
5]. Straight serial search schemes (also known as sliding 
correlators) appear to be a practical choice because of  
their simplicity. However, acquisition via straight serial 
search schemes can be quite slow. Parallel search 
schemes have much shorter acquisition times, but this 
benefit is at the expense of  much greater complexity. 
This has led to the development of  hybrid schemes that 
trade off the speed of  parallel search schemes with the 
simplicity of  straight serial search schemes. Naturally 
these hybrid schemes are of  great practical interest. 

The hybrid schemes simply test more than one 
phase at the testing stage, using M - 1 correlators 
(where M is greater than 2 but much smaller than the 
total number of phases) each tuned to a different phase. 
The testing stage is thus faced with an M-ary hypothesis 
testing problem--each of  M - 1 of  these hypotheses 
correspond to deciding that a particular phase is correct, 
and an additional hypothesis corresponds to deciding that 
none of  these M - 1 phases are correct. 

The use of  hybrid schemes has been discussed and 
studied previously in the literature [6-11]. In much of  
this work (see, for example, Section 1 of  [7], Section 2 
of  [10]), it has been assumed that it is optimal for the 
testing stage to use a bank of  M - 1 correlators that 
correlate over a fixed number of  chip intervals 5 and de- 
clare that the largest output corresponds to the correct 
phase if the output exceeds a preselected threshold. 

This test, which we refer to as the maximum cor- 
relation test, has three significant drawbacks. First, the 
correlator outputs can only be viewed as sufficient sta- 
tistics if the hypothesis that none of  the M - 1 candidate 
phases is correct is modeled as a noise-only signal, 
which is referred to as the "zero sequence" model [12]. 

5If the carrier phase is unknown, the correlation over a chip interval 
is taken to be the sum of the squares of an in-phase and a quadrature 
correlation. 

But it has been shown that the zero sequence model is 
far from accurate and that the null hypothesis is much 
better modeled as a random binary sequence [12]. 

Second, the structure of the test (choose the largest 
correlation if it exceeds a threshold) does not have any 
known optimality with respect to minimizing acquisi- 
tion time. The only exception to this statement is the 
degenerate case of M = 2 (straight serial search), be- 
cause in this case the test can be expressed in terms of  
a likelihood ratio [13]. Even here, however, the opti- 
mality is limited to a class of  schemes that use the zero 
sequence model for the null hypothesis. 

Third, the threshold for the maximum correlation 
test is unspecified, In general, a determination of  the 
threshold that results in the minimum average acquisi- 
tion time can be obtained through the use of  simulations 
only. 

In this paper, we show that a weighted maximum a 
posteriori probability (weighted MAP) test is "approx- 
imately optimal" (in a manner defined precisely in Sec- 
tion 5) among all fixed sample size (FSS) tests for the 
minimization of  the average acquisition time. The 
weighted MAP is similar in structure to the maximum 
correlation test, except that the likelihood ratio of  the 
chip correlations is computed using the random se- 
quence model for the null hypothesis. As with the max- 
imum correlation test, a detection decision is made if 
the largest of  these likelihood ratios exceeds a threshold, 
but, in contrast, the best threshold for the weighted MAP 
test can be calculated very easily without resorting to 
simulations. We study the performance of  hybrid 
schemes based on this new weighted MAP test. 

The optimality discussed above is restricted to FSS 
tests. For straight serial search schemes, the average ac- 
quisition time can be reduced considerably by using a 
sequential binary test (in particular, the sequential prob- 
ability ratio test (SPRT)), as opposed to a FSS test, at 
the testing stage [12, 14]. A similar gain in hybrid test- 
ing is highly desirable. To achieve this gain, an appro- 
priately designed M-ary sequential test must be utilized. 
The use of sequential multihypothesis decision theory 
with hybrid acquisition has not been investigated to date. 

In this paper, we investigate the use of  a test known 
as the MSPRT for acquisition. The MSPRT, a gener- 
alization of  the SPRT, is described and analyzed in [ 15]. 
It is shown in [15] that the MSPRT is typically two to 
three times faster than the best FSS test, a gain similar 
to that obtained by using the SPRT for binary hypothesis 
testing. In this paper, we show that the weighted MAP 
test outperforms a standard MAP test, and we also show 
that the MSPRT significantly outperforms both the MAP 
and the weighted MAP schemes. 
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The paper is organized as follows. The system 
model is given in Section 2. In Section 3, detailed de- 
scriptions of the weighted MAP-based and MSPRT- 
based acquisition schemes are given. A general frame- 
work for the analysis of  hybrid acquisition schemes is 
presented in Section 4. The design of these hybrid 
schemes to minimize the average acquisition time is dis- 
cussed in Section 5. Numerical results comparing var- 
ious acquisition schemes and directions for further re- 
search are given in Section 6. 

2. SYSTEM M O D E L  

The model that is used here for the DS/SS received sig- 
nal r(t) is the standard one (see, e.g.,  [2]), 

r(t) = x [ ~  a(t) c(t + 6To) cos(co0/ + O) + n(t) (1) 

where V is the received signal power, a ( ' )  is the data 
signal, c(. ) is the spreading signal, coo is the carrier fre- 
quency, Tc is the chip period of the spreading signal, 
(sTc is the phase of  the spreading signal, 0 is the phase 
of  the carrier, and n( .)  is additive channel noise. 

The spreading signal c(t) is given by 
o n  

c(t) = ~ c~~ - jT~) 
j =  --oa 

where Hr~(') is a unit rectangular pulse of duration T~ 
and {c ~~ is the code sequence used for spreading. This 
sequence is a doubly infinite binary sequence of the form 

( . . . .  c(~ c<~ c~~ . . . .  ) (2) 

where c(~ �9 { - 1 ,  1}. The kth phase of {c (~ is de- 
noted by { c (k)} ; i.e., 

c(k)(j) = c(~ + k), j = . . .  , - 1 ,  O, 1 . . . .  

(3) 

The acquisition problem is to determine the un- 
known phase, (sTc, of  the spreading signal. It is assumed 
that the phase uncertainty is restricted to the interval [0, 
LTc), where L is some positive integer. Since spreading 
sequences are periodic, the maximum value that L can 
take is the period of  the spreading sequence. 

Several assumptions are made with respect to a re- 
ceiver acquiring the spread signal. First, it is assumed 
that the receiver is perfectly synchronized to the carrier, 
and that coherent demodulation of the carrier is carried 
out prior to acquisition. Second, it is assumed that there 
is no data modulation during the acquisition process. 
This assumption is well justified since DS/SS transmis- 
sions usually include a training period during which the 

carrier is modulated only by the spreading signal [2]. 
Third, it is assumed that the chip boundaries of  the 
spreading signal c ( ' )  are aligned with that of  the locally 
generated signal. This assumption is justified in systems 
where the chip boundaries can be determined prior to 
acquisition. These three assumptions lead to a consid- 
erable simplification of the acquisition problem, and 
provide a good starting point for the study of hybrid 
schemes. In Section 6, we discuss how these assump- 
tions may be relaxed. 

Based on the above assumptions, we may correlate 
the received signal r(t) with cos(coot + 0), set the data 
signal a(t) to 1, and assume that the phase (5 of  the 
spreading signal is an integer (denoted by d). Then, with 
a slight abuse of notation, we have the following equiv- 
alent baseband model for acquisition: 

where d is an integer belonging to {0 . . . . .  L - 1}, 
and n(t) is white Gaussian noise with spectral density 
No~2. The acquisition problem then reduces to deter- 
mining the value of d. 

3. H Y B R I D  A C Q U I S I T I O N  S C H E M E S  

The general structure of  hybrid acquisition schemes 
is shown in Fig. 1. The receiver divides the L phases 
exhaustively into groups of phases, each containing M 
- 1 phases. These groups are then tested serially for the 
phase of the incoming sequence. Let {dl . . . . .  dM- 1 } 
be a particular group of phases. To test this group, the 
receiver generates the spreading signal at each of the 
M - 1 phases, and correlates these M - 1 signals with 

~(t) 
( M - I )  [ 
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Fig. 1. Stmcturc of hybrid acquisition schemes. 
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the received signal r(t) (of Eq. (4))�9 The outputs of  the 
M - 1 correlators are then used in an M-ary hypothesis 
test in the testing stage, the M hypotheses being 

Ho: d :~ dl . . . . .  dM_ t 

and, f o r k =  1 , . . . , M -  1, 

n~: d = d k 

If  the decision made at the testing stage is in favor of  
Hi, for some i, then this decision is checked at the ver- 
ification stage. Otherwise, the test proceeds to test the 
next set of  M - 1 phases. It is assumed that the verifi- 
cation stage employs a very long correlation time T,, and 
that its decisions are virtually error-free. If  the phase di 
is verified, then it is assumed that acquisition is com- 
plete. Otherwise, a new set of  M - 1 phases is tested. 

A more precise mathematical description of the 
testing stage is now given�9 The received signal r(t) is 
fed into a bank of  M - 1 correlators. The e-th correlator 
correlates r(t) with c(t + deTc) , and its output at time 
(n + 1)T C, after appropriate normalization, is given by 

~ o T  c I (n+ l)Tc Xe(n ) = r(t)c(t + deTr dt OnTo 

= pc~a)(n)c(a~)(n) + We(n) 

where p = ~/2VT~/N o, {c ~a)} and {c (a~ are as defined 
by (3), and for fixed e, {We(n), n = 1, 2 . . . .  } are in- 
dependent and identically distributed (i.i.d.) Gaussian 
random variables with mean 0 and variance 1. 

The vector (Xl(n), X2(n) . . . . .  X M_ t(n)) r of cor- 
relator outputs is denoted by X(n). The sequence {X(1), 
X(2) . . . .  } is used in the M-ary test to decide which 
hypothesis is correct. If  a sequential test is employed, 
this data also determines the stopping time at which the 
decision is made�9 The M hypotheses may be written in 
terms of  the correlator outputs as 

H0: X(n) = pC(n) + W(n), 

d :r d I . . . . .  dM-1 (5) 

and, f o r k =  1 . . . . .  M -  1, 

Hk: X(n) = pCk(n) + W(n) (6) 

where the ith component of  C(n) is c (a) (n)c~d'l(n), the ith 
component of  W(n) is W/(n), and the ith component of  
Ck(n) equals 1 if i = k and c(ak)(n) c(a~)(n) otherwise. 

In order to proceed with the design of  the hypoth- 
esis test, the joint probability distributions of  X(n) under 

the M hypotheses need to be determined. There are two 
problems that are encountered here. First, the hypothe- 
sis H0 is a composite hypotheses since, under Ho, d can 
take any of (L - M + 1) possible values. Note that 
checking for each value of  d in (5)essentially results in 
the implementations of  a parallel search scheme. Sec- 
ond, the joint distribution of  {Wl(n) . . . . .  WM-t(n)} 
depends on the cross-correlation of  the sequences 
{c (d'J} . . . . .  {c (d''- '1}, and an exact characterization of 
this joint distribution is cumbersome and inappropriate 
for implementation. 

The above two problems are alleviated by using the 
following alternative test: 

H0: X(n) = pR(n) + W(n) (7) 

and, fork  = 1 . . . . .  M -  1, 

Hk: X(n) = pRk(n) + W(n) (8) 

where the ith component of R(n) is Ri(n),  the ith com- 
ponent of  Rk(n) equals 1 if i = k and Ri(n) otherwise, 
and where {R I} . . . . .  {RM_ •} are mutually indepen- 
dent sequences of  independent random variables that 
take the values + 1 and - I with equal probability. We 
refer to such sequences as random binaly  sequences. 

This test is obtained by approximating the se- 
quences {c ~d)} for all d :g d k by mutually independent 
random binary sequences, if Ht is the true hypothesis. 
(Included are the cases d = dj f o r j  :~ k.) This model 
is referred to as the random sequence model  [12]. In the 
context of  straight serial search schemes, it has been 
shown in [12] that the random sequence model is very 
accurate--analytical results obtained using the random 
sequence model approximation closely match those ob- 
tained by simulation of  the actual system. The modeling 
of  mutual independence between sequences is motivated 
by the fact that spreading sequences (a typical example 
being PN sequences) are designed to have good auto- 
correlation properties [16]; i.e., the various phase- 
shifted versions of  the code sequence have very little 
correlation. 

With these approximations, it is easily seen that for 
any j ,  k ~ {0 . . . . .  L - 1} such that j ~ k, 
{cCJ)(n)cCk)(n)} is a random binary sequence, and 
{Wl(n) . . . . .  WM-i(n)} are independent random vari- 
ables. The hypotheses of  (5) and (6) can hence be ap- 
proximated by (7) and (8). 

The probability densities of  the X(n) under the M 
hypotheses can now be derived. Note that {X(1), X(2), 
� 9  } are i.i.d, random vectors. Letfj denote the density 
of  X(n) under HI.. Then 
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fo(x) = ~I 1 (x e _ p)2 
e=, ~ exp -~ 

+ exp( (xe+p)2)]2 

and 

1 ( ( x k - p ) 2 )  M-' 
fk(x) = ~ w  exp 5 e~- - , 

�9 ( x e - p ) 2 )  exp(  exp(  ~ + 

where x = (xl . . . . .  xM- 0 r. 

1 

(xe+p)2112 

The M hypotheses have prior probabilities associ- 
ated with them. Let 7rj denote the prior probability of 
/-/j. It is assumed that the L possible values for the un- 
known phase are equally likely. Thus 

L - M + I  
"jr  0 - -  

L 

1 
7rk = L '  k =  1 . . . . .  M -  1 

The M-ary test used in the testing stage is either a 
FSS test or a sequential test. The FSS tests use a fixed 
number (say N) of correlator output vectors for decision 
making. Two FSS tests are considered. The first of these 
is the maximum a posteriori probability (MAP) test that 
uses the following decision rule: 

Choose hypothesis H,n if 

m = arg max(-xj ~ - ~ .  i=t fj(X(i))) 

While the MAP test minimizes the overall error proba- 
bility [17], it is not the FSS test which results in the 
minimum average acquisition time. For this reason, the 
following weighted MAP test is also considered: 

Choose hypothesis H m if 

rn=argmax(wjTrj~I,  i = l  fj(X(i))) 

The weights are chosen so as to minimize the expected 
acquisition time--it is shown in Section 6 that the opti- 
mum weighted MAP test performs significantly better 
than the MAP test. 

The sequential test that is considered here is the 

MSPRT introduced in [15]. The number of samples NA 
used by the sequential test is a random variable which 
is determined by a stopping rule. The stopping and de- 
cision rules for the MSPRT are given by 

N A = first n >__ 1 such that 

n 

7rk I-I fk(X(i)) 1 
i = 1  > - -  

~=o ~r~ .= g(X(i)) 

for at least one k 

and 

Choose hypothesis Hm if 

m = arg max rj i= f~(X(i)) 

where the parameters Aj are positive and are chosen here 
to minimize the expected acquisition time. 

The verification stage is now described in more de- 
tail. This stage uses a single correlator and a binary FSS 
test. If the phase being verified is di, then r(t) is cor- 
related with c(t - diTc). The output of the correlator at 
time (n + 1)To after appropriate normalization is 

X(n) = pc(a)(n)c(ai)(n) + W(n) 

where { W(n), n = I, 2 . . . .  } are i.i.d. Gaussian random 
variables with mean 0 and variance 1. 

Using the random sequence model, the hypotheses 
H'o and HI that represent, respectively, d ~ di and d = 
di, are given by 

Hi: X(n) = pR(n) + W(n) 

H{: X(n) = p + W(n) 

where R(n) is a random binary sequence. 
Let f~ and f l  denote the density of X(n) under H~ 

and H{, respectively. Then 

f;(x) - 2x~-~ exp 

+ exp(  ( x +  2 p)2) ]  

1 ( (x 2P)2 ) f~(x) = ~ exp 

The test used in the verification stage is a FSS like- 
lihood ratio test that uses To samples. It has the form 
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T:, 

Choose H~ if 1~ f~(X(i)) 
i = l  

T,, 

> IT f](X(i)) and HI otherwise 
i = l  

where T,, is chosen so that the error probabilities under 
each hypothesis are negligibly small (i.e., smaller than 
a prespecified tolerance). Note that this test is a maxi- 
mum likelihood (ML) test [17]. 

4. ANALYSIS 

As mentioned in the previous section, the FSS and 
MSPRT tests used in the testing stage are designed to 
minimize the expected value of  the acquisition time Tacq. 
It is thus of  interest to derive a general expression for 
the expected acquisition time for hybrid schemes. To- 
ward this end, we define the following. Let T represent 
the number of  samples taken at the testing stage. Let 
Eo[T] and E1 [T] represent the expected value of  T under 
H0 and Hi, respectively. (By symmetry, Ek[T] = El[T], 
for k = 1 . . . . .  M - 1.) Note that T is considered to 
be a random vanable in general, with the understanding 
that E0[T] = El[T] = Tfor  FSS tests. Furthermore, let 

PF = Prob(choose one of  ~. ,  j r 0[Ho is tree) 

PM = Prob(choose Hol/--/i is true), j r 0 

PE = Prob(choose one of Hk, k r j ,  

k r 0[/-/j is true), j ~ 0 

The fact that PM and PE do not depend on j is also due 
to symmetry. Finally, denote the total number of  phase 
groups being tested by no. Note that 

no[ ] 
where V x-] denotes the smallest integer _> x. 

With these definitions, it is straightforward to draw 
the block diagram of the acquisition process, under the 
condition that correct phase is tested in the ith group, as 
shown in Fig. 2. With the help of  this diagram and the 
analysis method using signal flow graph techniques 
given in [13], the following expression for average ac- 
quisition time is derived in the Appendix: 

(no  - 1)(1 + PM +, PE)(Eo[T] + PFT.) 
E[Tacq] = 2(I - -  P M  - -  P E )  

El[T] + (1 - PM)Tv 
+ (9) 

1 - P M - P  e 

START ) 

(1--PF) i - "  

O - P r )  i 

(~ ,~ 

(I-PF) 

Fig. 2. Block diagram of hybrid acquisition schemes. 

This expression, when simplified for the case of  straight 
serial search schemes, is equivalent to the result in [13]. 
Due to the fact that the authors of  [ 13] do not include 
the final verification in their definition of  acquisition 
time, the two expressions differ by 7", samples. 

5. A C Q U I S I T I O N  AND V E R I F I C A T I O N  
STAGE DESIGN 

The verification stage and various choices for ac- 
quisition stage each have parameters that must be spec- 
ified. The general principle in the design of  these param- 
eters is to choose them in such a way so as to minimize 
the expected acquisition time while not exceeding a 
specified (low) probability of  incorrect acquisition. 
Symmetry and other techniques are used wherever pos- 
sible to avoid multidimensional numerical searching 
techniques. 

5.1. Verification Stage Design 

The verification test has as a parameter the verifi- 
cation time Tv. We choose to design T, so that both 
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types of  error probabilities (declaring the wrong phase 
as correct and declaring the correct phase as incorrect) 
are less than 10 -8. The Chemoff bound is used to bound 
these probabilities under the random sequence model. 
(It is shown in [12] that the random sequence model, 
when used as an analytical tool, provides high accu- 
racy.) The Chemoff bounding approach gives 

P(Choose H IIH~ is true) 

(~= {f'l(X(i))~ 0 ) 
= P  ~ ~ \ fb(X( i ) ) /  > l lH~is t rue  

_< [p(O)] z' 

where 

p(O) = f ~_,~ fl(y)~176 dy 

Similarly, it can be shown that 

P(Choose H~IH' ~ is true) < [0(1 - 0)] r'' 

Let 0* = mina 0(0). Then clearly both error probabili- 
ties are bounded by (p.)r,,, which can be obtained nu- 
merically as a function of  p. Design is then completed 
by choosing T~ to satisfy 

- 8  L _ > - -  
logm O* 

5.2. MAP Test Design 

The only parameter that can be designed in this test 
is N, the number of  samples. Because analytical deter- 
mination of  PM, PE, and PF is difficult, simulation is 
employed to determine these quantities as a function of  
N. These values are used in (9) to compute E[Tacq], and 
the value of  N that minimizes E[Tacq] is chosen. 

5.3. Weighted MAP Test Design 

Design of  this test requires determination of  N and Wo, 
w~, . . .  , wM-1. By symmetry considerations we have 
wl . . . . .  wM- ~. Furthermore, multiplying each w,- 
by the same constant leaves the test unchanged, so that 
without loss of  generality we can take wt = 1. This 
specifies all parameters except for N and w o. 

Further design simplification is possible through the 
use of  Bayesian decision theory. Towards this end, we 
assume that PM, Pe, and PF are "smal l . "  Then 

(1 - PM-- Pe)-I = 1 + PM + Pe 

I + PM + PE 
-~ 1 + 2PM+ 2PE 

1 - -  P M  - -  P E  

and 

1 +PM 
.~ I + P  e 

1 - P M  - Pe 

Inserting these approximations into (9) gives 

N(n o - 1) 
E[Tacq] - 2 (1 + 2PM + 2Pe) 

+ N(1 + PM + PE) 

( no,) + L  1 + PE + - - - ~ P  (10) 

Note that, for fixed N, (10) is a linear function of  
PM, Pe, and PF, and also, minimizing (10) is equivalent 
tO m i n i m i z i n g  

NnoPM + (Nno + T,,)PE + 
T , (no-  1) 

PF (11) 

We now assume that Nn o >> T v and n o >>  1. Then a 
good approximation to (11) is 

Tvn o 
NnoP M + NnoP e + - - ~  P F (12) 

Now, the Bayes risk function can be defined [18] 

M - I  M - I  

R(~)= Z ~-; Z 
i=0 j=O 

C(i, j )  fr ~(j lY)f,(Y) dy 

where C(i, j )  is the cost of  deciding ~ when Hi is true, 
y is abbreviated notation for {X(1) . . . . .  X(N)}, and 
5(J lY) is a decision rule (one if ~ is chosen and zero 
otherwise). 6 

Let I'j = {y: ~(Jly) = 1}. Then 

M - I  M - I  f 
R(~) = ~ ~ C(i, j )  f(ylHi) dy 

i=0 j=O I'j 

M--l M - l  

= ~,, 7r i Y] C(i,j)ai, j (13) 
i=0 j=O 

where ai,i = P(Accept I-lilHi is tree). Setting (12) equal 
to (13) gives 

C(i, j )  = 

tZ0/27r o i = 0, j r 0 

i = j  

~,Nno/Tri(M- 1) otherwise 

6A nonrandomized decision rule is sufficient in this case. 
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The decision rule that minimizes this risk is [18] 

I 
0 if Be(y) > m(y) 

$(ilY) = if Bi(y) = m(y) and 

Be(y) > m(y) for all e r i 

where 
M - I  

Be(y) = ~,, ~riC(i, Ofi(y) 
i = 0  

and m(y) = mineBe(y ). 
Substituting the appropriate expressions leads to the 

weighted MAP test with tot . . . . .  toM- ~ = 1 and 

T,, M - 1  
too - (14) 

2N L - (M - 1) 

The Bayesian approach shows that the weighted 
MAP test with these weights is "approximately opti- 
mal"  among FSS tests. To fully design the test, a sim- 
ulation is used to determine Pro, PE, and PF as a function 
of  N, to o is chosen according to (14), and N is chosen to 
minimize E[T~q]. Additional simulations with varying 
values of  % verify that (14) is indeed optimum. 

5.4.  MSPRT Design 

The MSPRT is fully specified by choosing values 
for A0, A~, . . .  , AM-~. By symmetry we have A~ = 

. . . .  AM- ~. Once again, because analysis is difficult, 
simulation is employed to determine the values of  A o 
and At that minimize E[Ta~q]. 

6. N U M E R I C A L  R E S U L T S  AND 
C O N C L U S I O N S  

Comparisons of  the performance of  the MAP test, 
the weighted MAP test, and the MSPRT are given in 
Figs. 3 through 5 for acquisition of  a pseudonoise (PN) 
sequence of  period 1023. The sequence is generated by 
the primitive polynomial 3023 (in octal notation) of  de- 
gree 10. The results in these figures are for the best pos- 
sible tests in the sense that all parameters have been cho- 
sen to minimize E [ T , j .  The optimal values for these 
parameters, as Well as the designed verification time T~, 
are given in Tables I through IV. 

The figures show that the weighted MAP test pro- 
vides uniformly lower expected acquisition time than the 
MAP test, and the MSPRT provides significantly lower 
mean acquisition time than both of  the other tests. Fur- 
thermore, the ratios of  expected acquisition times for the 

1 0  s : _ _ _ ~ _ , _ _  

E ;-.----i ...... r---'---t . . . .  i -- ' ---~----!  ....... 
:,~ - -~ - - '~ . - - f - -  ".~_:. - - - - ~ ~ - - i - - - -  

- ' - - - - ' - - " - ' ' ' " ~ . -  -'= . . . .  ! . . . .  T "  . . . .  i . . . . .  i . . . . .  
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o 
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Fig. 3. Performance comparison o f  hybrid acquisition schemes, 
M = 2 .  
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Fig. 4. Performance comparison of hybrid acquisition schemes, 
M = 5 .  
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Fig. 5. Performance comparison of hybrid acquisition schemes, 
M=21.  

various tests are very insensitive to p.  Between the 
MSPRT and the weighted FSS test there is roughly a 
speedup factor of  4 for M = 2, decreasing to 1.7 at 
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Table !. Parameters of the Verification 
Stage 

p p* T,, 

0.10 0.9988 14750 
0.15 0.9972 6550 
0.20 0.9950 3650 
0.25 0.9922 2350 
0.30 0.9888 1650 
0.40 0.9803 950 
0.50 0.9695 600 

Table II.  Parameters  o f  the M A P  Test 

M = 2  M = 5  M = 2 1  
p N N N 

0.10 2350 2345 2180 
0.15 1020 1060 1030 
0.20 575 590 595 
0.25 380 370 380 
0.30 265 280 255 
0.40 155 160 150 
0.50 95 100 100 

Table III. Parameters of the Weighted MAP Test 

M = 2  M = 5  M = 2 1  

p N ~o N ~o N ~o 

0.10 940 0.007 1280 0.02 1835 0.08 
0.15 395 0.008 650 0.02 840 0.08 
0.20 250 0.007 320 0.02 480 0.08 
0.25 155 0.007 235 0.02 295 0.08 
0.30 115 0.007 160 0.02 200 0.08 
0.40 55 0.008 95 0.02 120 0.08 
0.50 45 0.008 60 0.02 80 0.08 

Table IV. Parameters  o f  the MSPRT 

M = 2  M = 5  M = 2 1  

p Ao AI Ao AI Ao AI 

0.10 1.0E-3 6.1E-2 2.3E-3 7.0E-3 5.0E-3 3.4E-2 
0.15 7.0E-4 3.1E-2 2.2E-3 7.0E-3 5.0E-3 5.0E-2 
0.20 7.0E-4 3.1E-2 1.6E-3 7.0E-3 5.5E-3 5.0E-2 
0.25 7.0E-4 3.1E-2 1.6E-3 7.0E-3 5.5E-3 4.2E-2 
0.30 7.0E-4 1.2E-1 1.6E-3 6.0E-3 5.5E-3 6.2E-2 
0.40 6.0E-4 1.2E-I  1.6E-3 8.0E-3 5.0E-3 5.0E-2 
0.50 6.0E-4 6.4E-2 2.5E-3 1.6E-2 5.0E-3 3.0E-2 

I0 s = . �9 ~ _~ 

i M=2 
E ~ - -M~5 
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Fig. 6. Performance comparison of the MSPRT for hybrid acquisi- 
tion. 

M = 21. Between the MSPRT and the MAP test, the 
corresponding speedup factors are 8 for M = 2 and 2 
fo rM = 21. 

In Fig. 6 we compare the MSPRT tests for varying 
values of M. This figure shows that the expected acqui- 
sition time decreases with increasing M, as is expected. 
Thus, the MSPRT provides the trade-off between per- 
formance and complexity that is the main goal of hybrid 
schemes, and it also provides the shortest mean acqui- 
sition times among the three tests considered here. 

Our simulations reveal that each of these tests is 
quite insensitive to the values of the parameters. (The 
fluctuations in the optimal parameter values in Table IV 
are due to this fact.) This is a desirable feature for any 
test for acquisition. However, we note that each of these 
tests also depend on p explicitly (through the likelihood 
ratios). The total sensitivity of the tests to p is beyond 
the scope of this paper. If in fact there is significant 

overall sensitivity to p, suboptimal statistics with little 
or no dependence on p may be preferable in applications 
with strong and rapid signal-to-noise fluctuations. 

In conclusion, several tests for hybrid acquisition 
have been presented and their performance has been 
characterized. It has been shown that the MSPRT has 
superior performance with regards to expected acquisi- 
tion time. There are also several avenues for future re- 
search. Of primary interest is the relaxing of the three 
assumptions given in Section 2. In particular, the use of 
noncoherent demodulation, demodulation in the pres- 
ence of data, and demodulation in the absence of chip 

boundary synchronization should be explored. In all 
three cases, it is expected that generalizations of the 
MSPRT approach can be utilized through suitable mod- 
ifications of the hypothesis models given in Section 3. 
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APPENDIX: DERIVATION OF EXPECTED 
ACQUISITION TIME 

Let Mj(z) :=  E~= I z 'P(T = nlI-1 j) be the moment 
generating function (MGF) of T under/-/j., j = 0, 1. 
Also let Macq.i(z) denote the MGF of Tacq given that the 
true hypothesis is tested in the ith group. Then, using 
signal flow graph techniques (see [13]), the following 
expression is easily derived: 

Macq.i(Z) 

M0(Z)[1 - PF + Pezr"] i -  IMJ(z) 

{1 --  M0(Z)[1 - PF + PFZr"] "~  l 

MI(z)[PM + PEZr"]} 

�9 (1 -- PM -- PE)Z r'' 

Let Macq(Z) denote the unconditional MGF of TaCq. 
Then, since all phases have been assumed to be equally 
likely, 

1 ~ Macqi(Z) Macq(Z ) = - -  
n O i = l  

Now, it is a standard result that 

g[Tacq] --  Macq( z 
Z = !  

From this equation and using the fact that Mj(1) -- 1 
and Mj (z) = Ey[T], j = 0, 1, the expression for the 
expected acquisition time given in Eq. (9) is obtained. 

Note that higher-order moments of  Tac q may also 
be derived from Macq(Z). In particular, an expression for 
Var(Tacq) (given in terms of the means and variances of  
T under H o and Hi) can be obtained using 

Var(Tacq) = Macq(Z ) 
Z = I  

+ E[Tacq] - (E[Tacq]) 2 
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