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The problem of detecting a sinusoid with drifting phase in the presence of additive white 
Gaussian noise is considered. A Lorentzian signal model is used, in which the signal to be 
detected is modeled as a sinusoid whose phase is drifting with Brownian motion. A class of 
quadratic detectors that trade off coherent and noncoherent averaging of the received 
waveform is studied. The deflection ratio is used as a performance criterion, and the optimum 
quadratic detector structure as parametrized by the phase bandwidth is derived. Then, the 
performance relative to the optimum of a class of suboptical detectors called m-order 
noncoherent detectors is considered. It is shown that the best detector in this class performs 
nearly as well as the optimum quadratic detector. This is in sharp contrast with standard 
envelope detection whose performance is shown to degrade severely in the presence of phase 
drift. Simulated detection probabilities that verify this performance disparity are also 
presented. 

PACS numbers: 43.60.Gk 

INTRODUCTION 

The reliable detection of weak acoustic signals typically 
requires the accumulation of signal energy over relatively 
long integration times. Although such signals may be nomi- 
nally harmonic, as a practical matter the phase of such sig- 
nals cannot be assumed to be perfectly stable throughout the 
integration time. Since the phase may drift substantially dur- 
ing the formation of the detection statistic, it is not realistic 
to model such signals as constant-phase sinusoids in the 
analysis and development of signal detection algorithms. On 
the other hand, if there is harmonic structure in the signal of 
interest, then it is inefficient not to exploit this structure (as 
would be the case, for example, if simple radiometry were 
used for detection). Thus it is of interest to consider detec- 
tion algorithms that can trade off the coherent averaging 
that is optimum for constant-phase harmonic signals with 
the noncoherent averaging that is optimum for a purely sto- 
chastic signal, these two cases being the extremes of the be- 
havior of a sinusoidal signal undergoing phase drift. 

In this paper, we consider a class of quadratic detectors 
with which this tradeoff can be effected. We adopt a Lorent- 
zian signal model, in which the signal to be detected is mod- 
eled as a sinusoid whose phase is drifting with Brownian 
motion. The severity of phase drift can then be parametrized 
by the variance parameter of this Brownian motion. It is 
assumed that this signal is observed in the presence of white 
Gaussian noise. Although the globally optimum detection 
statistic for such a problem is not quadratic (see, e.g., 
Poor'), we consider only quadratic detectors in this study 
due to the simplicity of their implementation relative to the 

infinite-dimensional estimator-correlator that is optimum. 
In view of the weak-signal, long-integration time scenario of 
interest, we adopt the deflection ratio • as a performance cri- 
terion by which to optimize detector structure, as is custom- 
ary in the design of quadratic detectors (see, e.g., Baker2). 

Within this setup, we first derive the optimum quadratic 
structure as parametrized by the phase bandwidth. We then 
consider the performance relative to this optimum of a class 
of suboptimal detectors, called m-order noncoherent detec- 
tors, that trade off coherent and noncoherent integration of 
the received waveform. This class of detectors is adapted 
from a similar application in the problem of on-off-keyed 
optical communications. 3 Here, we derive an optimum de- 
tector over this class (as a function of relative phase band- 
width) and show that this detector comes to within 2 dB of 
maximum deflection throughout the interesting range of pa- 
rameters. This is in sharp contrast with standard envelope 
detection, whose performance is shown to degrade severely 
in the presence of phase drift. Simulated detection probabili- 
ties are also presented to verify this performance disparity. 

This paper is organized as follows: In Sec. I, we present 
the signal and noise model of interest, and discuss the struc- 
ture of the globally optimum (estimator-correlator) detec- 
tion statistic, the conventional envelope detector, and the 
proposed family of m-order noncoherent detectors. The op- 
timum quadratic detector is derived in Sec. II, and a deflec- 
tion analysis of it and the proposed detector family is carried 
out in Sec. III. Section IV discusses the calculation of false- 

alarm probabilities and the corresponding threshold deter- 
mination for the various detectors of interest, and detection 
probabilities estimated through computer simulation are 

811 J. Acoust. Soc. Am. 89 (2), February 1991 0001-4966/91/020811-09500.80 ¸ 1991 Acoustical Society of America 811 

Downloaded 23 Aug 2013 to 130.126.138.40. Redistribution subject to ASA license or copyright; see http://asadl.org/terms



presented. Finally, some concluding remarks and interesting 
open problems for further study are discussed in Sec. V. 

I. BACKGROUND 

A. The detection problem 

The detection problem of interest can be modeled as a 
test between two statistical hypotheses, Ho and Hi, described 
by 

Ho' Yt -- N ,, O<t<T 

vs (1) 

H,. Y, --A cos(root + O, + •b) + N,, 0<t<T. 

In this model, the signalS, - A cos(wot + O, + •b), 04t4 T, 
has known frequency (Oo; nonzero amplitude ,4; and phase 
O, + qb, 04t4T, where •b is a random initial phase offset, 
uniformly distributed in the interval [0,2rr], and the phase 
drift process {O,; O4t4T} is a Brownian motion, indepen- 
dent of •b. Note that the addition of the random phase •b 
renders the signal wide-sense stationary. The noise process 
{N,; O4t4T } is assumed to be a white Gaussian process, 
independent of the process {O,; O4t4T} and the initial 
phase •b, and having two-sided power spectral density 
(PSD) No/2. Without significant loss of generality, it is as- 
sumed that the frequency of the signal satisfies rootlet -- n, 
for some large integer n. 

Before proceeding further, it is convenient to normalize 
the hypothesis testing problem of Eq. (1) in the following 
way. We write !3, as !3,- x/2/3 B,, 0<t4T, where • is a 
constant and {B,; 04t4T} is a unit Brownian motion (i.e., 
{Bt; 0•<t<T}; is a zero-mean Gaussian process with auto- 
correlation function E{B,B,} -- min{t,s} for all t,s>O). We 
then define the signal-to-noise ratio p, and the relative phase 
bandwidth (or the time-bandwidth product) • of the signal, 
as p -- A 2T/No and •- rr/3T, respectively. Finally, we di- 
vide the observations by xfNo/2, and normalize the time so 
that the time period T is 1, to obtain the equivalent hypothe- 
sis pair (for convenience, the same symbols are retained after 
normalization). 

Ho: Yt -- Nt, 04t41 

vs (2) 

Hi' Yt -' x/2/9 cos(n•rt + !3, + •b ) + N,, 04t41. 
With this normalization, the phase drift process is given by 
Ot- x/•Bt, 0<t<l, and the additive noise {N,; 0<t<l} 
has a two-sided PSD of 1. The normalized signal St = x/2p 
X cos(nrrt + Ot + &), 0<t< 1 has mean 0 and autocorrela- 
tion function given by (see, e.g., Ref. 4) 

R s (t,u) -- E{S,S, } 

=pcos[n•r(t-- u) ]exp( -•lt- u[), 

04t, u41. (3) 

The power spectrum of the signal, which can be obtained by 
taking the Fourier transform of Eq. (3), has a Lorentzian 
shape with center frequency nrr, and with 3-dB bandwidth • 
as given below: 

Ss((o) = 2p•/[ (n•r- (o) 2 + •2]. (4) 

To overcome the analytical difficulties encountered in deal- 
ing with white noise, we integrate the observations in Eq. (2) 
to get the following equivalent model (all stochastic inte- 
grals in the paper are defined in the mean-square sense): 

Ho:X,-- W,, 04t41 

vs (5) 

•f0 t H•' X, -- Su du + W•, 04t41, 

where Xt - œ• Y, du, 0<t<l, and where {Wt; 0<t<l} is a 
unit Brownian motion independent of {Bt; 0<t< 1 }. 

The model of Eq. ( 5 ) is the one that we shall analyze in 
the sequel. We turn first in this analysis to a brief description 
of optimum Bayesian detection in this model. 

B. Neyman-Pearson optimum detection 

The Neyman-Pearson optimum detector for the prob- 
lem of Eq. (5), i.e., the scheme that has the minimum miss 
probability for a given level of false alarm probability, com- 
pares the likelihood ratio with a prespecified threshold to 
decide between the two hypotheses (see, Poor • ). It is easy to 
see that the signal {St; 0<t< 1 } satisfies the conditions 

g IStldt 

and 

o • ( S, ) 2 dt < o• with probability 1. 
Using these conditions along with the fact that the signal 
{S,; 04t41} and noise {N,; 04t41} are independent, it fol- 
lows from Ref. 1 that the log-likelihood ratio for the problem 
of Eq. (5) has the following estimator-correlator structure: 

;o I ;o' dP l • "" 1 ^ 

og(Xo)- &clX, (6) 
where X/• is a shorthand notation representing the set of 
observations: (Xu; O<u <t}; and }• • E l {S t I X D } denotes the 
causal minimum-mean-square-error (MMSE) estimate of 

• for 0<t<l S, given X o, ß 
The Neyman•Pearson detection strategy would involve 

comparing the log-likelihood ratio of Eq. (6) with a thresh- 
old r to decide between the two hypotheses. However, we 
should note that the estimator-correlator structure of Eq. 
(6) is only a representation of the log-likelihood ratio in 
terms of the estimate {•; 0<t•< 1}, which is in general quite 
difficult to determine when the signal is non-Gaussian (as is 
the case here). 

An approximation to {}•; 0<t•<l} can be obtained for 
the problem of interest by using the extended Kalman filter 
approach. I The approximation to the optimum detector thus 
obtained is a phase-lock loop (which tracks the time-varying 
phase) followed by a coherent detector. This detector struc- 
ture has been proposed by Georghiades and Snyder • for the 
problem of sequence detection in the presence of phase noise 
in the context of optical communications. Unfortunately, 
this detector, although promising, is only an approximation 
to the optimum one; and the degree to which it serves as such 
is still an open question. 
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C. Noncoherent detection 

As an alternative to the phase-tracking detectors de- 
scribed above, it is of interest to analyze the performance of 
detectors that do not need phase information. One such de- 
tector in common use is the standard noncoherent detector 

($ND), which is optimum for the problem of Eq. ( 5 ) when 
the phase is unknown but constant (i.e., when,o = 0). The 
test statistic for this detector is given by 

(;o A•. -- cos(nrrt)dX, + sin(nrrt)dX, . (7) 

Note that this detector is potentially useful when the phase 
drift is minimal over the observation interval (i.e., when • is 
small) since it coherently averages the in-phase and quadra- 
ture components of the harmonic signal before extracting 
the energy. On the other hand, one would not expect this 
approach to work well when the phase drifts significantly 
over the observation interval, as can be the case in the long- 
integration time scenario of interest here. Thus it is of inter- 
est to consider a useful modification of this detector, referred 
to as the m-order noncoherent detector (mND), using the 
following test statistic: 

A •,, -- • cos ( n •t) dX, 
i = 1 kd(i -- I )/m 

+ sin (n•t)dX, , ( 8 ) 
kd(i-- l)/m 

where m is a positive integer characterizing the detector. 
Note that, for a fixed value of m, this detector trades off 
coherent integration over the intervals of length l/m, with 
noncoherent integration (i.e., post-detection integration) of 
the m coherently integrated segments. Thus, as we shall see 
below, the value of m can be optimized to yield the best 
trade-off of these two effects for a given degree of phase in- 
stability. Note that the SND is the m = 1 instance of the 
raND. 

The m-order noncoherent approach has been proposed 
by Foschini et al. 3 for the problem of demodulating on-off- 
keyed optical signals in the presence of phase noise. This 
work demonstrated via simulation that this structure yields 
improved error-rate performance over the one of Eq. (7) in 
this problem. Here we will analyze this detector, together 
with others, in the model of Eq. (5), and we will derive an 
analytical method for choosing an optimum value of the in- 
teger parameter m as a function of the relative phase band- 
width •. 

We note that the detection statistics described in Eqs. 
(7) and (8) are quadratic forms, which are of course natural 
methods of metering energy, regardless of degree of coher- 
ence. Quadratic detectors (or their bias-corrected counter- 
parts) are well known to be locally optimum for the detec- 
tion of stochastic signals in the presence of additive white 
Gaussian noise (see, e.g., Refs. 6, 7). These considerations 
motivate us to consider a class of detectors for the problem of 
Eq. (5) that have a general quadratic form described in the 
following section, and to optimize detection performance 
over this class. To do so, we will consider the deflection crite- 
rion, defined in the following section, as the criterion of opti- 
mality. 

II. OPTIMUM QUADRATIC DETECTION FOR GENERAL 
SIGNALS 

We consider quadratic detectors for the problem of Eq. 
( 5 ) that decide between the hypotheses by comparing with a 
threshold r the following quadratic form: 

A = Q(t,u)dX• dX,, (9) 

where Q(t,u) belongs to the Hilbert space •r•2 of square- 
integrable functions on [0,1 ]2 on the real field. The inner 
product and norm on this Hilbert space are defined, respec- 
tively, by 

(Qi,Q2) - Q•(t,u)Q2(t,u) dtdu, 

and 

IQ, I = x/(Q•,Q,), 

where Q• (t,u) and Q2 (t,u) belong to •r•2 . 
Prior to finding the optimum quadratic detector, we 

need to choose a criterion for optimality. Ideally, one would 
like to find the quadratic detector that minimizes the miss 
probability for a given level of false alarm probability. How- 
ever, due to the intractability of error probabilities for such 
non-Gaussian nonlinear problems, we use the deflection 2 as 
the optimality criterion. In particular, we select as optimum 
any Q•2 for which the deflection 

H(A) = (E•A -- EoA)2/varo(A), (10) 

is maximized. Note that the function H is a measure of sig- 
nal-to-noise ratio, and its relation with the likelihood ratio is 
discussed in Ref. 8. The use of the deflection as an optimiz- 
ation criterion can be motivated by a number of arguments, 
not the least of which is that the optimum quadratic detector 
thus obtained is the locally optimum Neyman-Pearson de- 
tector for our problem. 9 

Before we proceed to find the optimum quadratic detec- 
tor, we list some stochastic properties of Brownian motion 
that will be needed in our analysis. Proofs of these follow 
similarly to that of Proposition VI.D. 1 in Ref. 1. 

Proposition 1: A unit Brownian motion {W,; 0<t<l} 
has the following properties: 

(1) œolœo•F(t,u)dW, dW• exists as amean square (m.s.) 
integral if and only if F is square-integrable on [ 0,1 ] 2. 

(2) If F is square-integrable on [ 0,1 ] 2, then 

{;o' } E F(t,u)dW, dW• = F(t,t)dt. 

(3) If F and G are square-integrable on [ 0,1 ] 2, then 

{;o' ;o } E F(t,u)dW, dW,, G(t,u )dW, dW• 

= F(t,t)G(u,u)dt du 

+ F(t,u) G(t,u)dt du 

+ F(t,u)G(u,t)dt du. 

We may now state the following result. 
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Theorem 1: For the detection problem of Eq. (5), the 
deflection criterion is maximized over ff•2 by •opt (t,u) 
= Rs (t,u), O•t,u• 1, and the corresponding maximum val- 
ue of the deflection is Hopt = « (Rs,Rs). 

Proof' We begin by finding an expression for the deflec- 
tion of a general quadratic detector as defined in Eq. (9) 
when it is used to discriminate between the hypotheses of Eq. 
(5). 

By property (2) of Proposition 1, we have that 

Eo(A) = E Q(t,u)dW, dWu - Q(t,t)dt. 

ill) 
The independence of (S,; 0<t< 1) and ( W,; 0<t< 1) gives us 

El (A) -- Eo(A) = E Q(t,u)•S• at au 

= Q(t,u)Rs(t,u)dt du 

- (Q, Rs ). 

From property (3) of Proposition 1, we then have 

Eo{A 2} = E Q( t,u)aWt aW• 

(12) 

= Q(t,t)dt + (Q,Q) + (Q,Q*), (13) 

where Q*(t,u)•Q(u,t), o•<t,u•<l. From Eqs. (11) and 
( 13 ), we get a simple expression for the variance of A under 
Ho as 

varo(A) = (Q,Q) + (Q,Q*). . (14) 

Substituting Eqs. (14) and (12) into Eq. (10), we have 

H= [ <Q, Rs> ]2/[ <Q,Q > + <Q,Q.)]. 
By invoking the symmetry of Rs, H can be written as 

H_I [<Q+Q*,Rs>] 2 ' 
2 (Q+ Q*,Q+ Q*) 

Applying the Schwartz inequality thus yields 

m<•(•,•), 
with equality if and only if 

(15) 

(16) 

Q(t,u) + Q*(t,u) - aRs(t,u), 

for some nonzero real scalar a. In particular, a solution that 
maximizes the deflection is given by the symmetric function 
Qopt (t,u)---Rs(t,u), and the corresponding deflection is 
Hop t -- _19 (Rs,R S ). 

Note that Theorem 1 remains valid for arbitrary signals 
in the model of Eq. (5). All that is required is the inter- 
change of the integration and expectation in Eq. (12), a con- 
dition for which mean-square continuity is sufficient. Thus 
this result is applicable to a much more general class of prob- 
lems than2that considered in this paper. 

III. DEFLECTION ANALYSIS 

In this section, we compare the deflection of the opti- 
mum quadratic detector with that of the noncoherent detec- 
tors introduced in Sec. I C, under the model described in Sec. 
I A. The purpose of this exercise is to investigate how much 

can be gained, in terms of deflection, by using the optimum 
quadratic detector instead of the simpler noncoherent detec- 
tors. It should be noted that the relative performance of the 
detectors measured using the deflection criterion could be 
different from that measured using error probabilities. How- 
ever, as noted previously, the error-probability analysis of 
general quadratic detectors is prohibitively difficult when 
the signal is non-Gaussian (as is the case here). 

Henceforth, in this paper we shall make the "narrow- 
band" assumption that n • •e, i.e., that the center frequency 
of the signal is very much larger than the bandwidth of the 
signal spectrum. With this assumption, we may obtain ap- 
proximate expressions for the various quantities of interest 
that are independent of n. It should be noted that the very 
same expressions could also be obtained by using a baseband 
envelope detection approximation at the outset (as is done, 
for example, in Ref. 3). 

We first note that the deflection of the optimum detector 
can be evaluated as follows: 

= cos2 [nrr(t- u)] 
2 

Xexp( -- 2•e It- ul)dt du 

•- (1 - I r )cos2(nrrr)exp( - 2g --1 

--/9 2 ( 1 - r)cos2(nrrr)exp( -- 2gr)dr 

= -•- ( 1 - r)exp( - 2•r)dr + ( 1 - r) 

X cos(2nrrr)exp( -- 2gr)dr). (17) 
It can be shown straightforwardly that the second integral 
on the right-hand side of Eq. (17) is negligible for n • •e, and 
so we get the following approximation in this case: 

! 

19 2 
Hop,--•- Jo (I -- r)exp( -- 2•r)dr 

=p212• + exp( - 2•) -- 1]/8• 2. (18) 
We now turn to the evaluation of the deflection of the m- 

order noncoherent detector of Eq. (8). Under Ho, we have 

A•,, = • cos(n•t)dW, 
t kd(i -- 1 )/m 

+ sin(n•t)dW, 
xd(i • I )/m 

where 

and 

= • (N,i)2 + (N2i)2, 
i=1 

ilm N•i : COS ( n rrt) d W t 
J(i - 1 )/m 
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ilm N2, = sin ( nrrt ) d W, . 
d(i -- 1 )/m 

On assuming that n>>m, the random variables Nli, 
i- 1,...,m, and N2i, i = 1 .... ,m, can be shown to be well ap- 
proximated by independent normal random variables with 
means 0 and variances 1/2m. This approximation is exact if 
n/m is integral. Thus we have 

m 

varø(hem )= Z var[ (Wli)21 _ql_ var[ (N2,)2] 
i=1 

'" 2 2 

= • (2rn) 2 + , (2rn)2 

= 1/m. (19) 

The independence of (S,; 0•<t•< 1) and (W,; 0•<t•< 1) yields 

g!{Aem)- go(Aem) 

= • E cos(nrrt)S, dt 
t \d(i -- I )/m 

+ sin(nrrt)S, dt 
\d(i -- I )/m 

m film •i/m = • cos[nrr(t -- u) ]Rs(t,u)dt du 
t d(i -- I )/m d(i -- I )/m 

m •01/rn film =p • cos2[nrr(t -- u)] 
-•_ t 1 dO 

Xexp( -- • It- ul)dt du 

= 2pm - cos2(nrrr)exp( -- •r)dr 

tl Tl'T 

= • ( 1 -- r)cos 2 exp - dr 
rn rn 

m•fol(1--r)exp(--•)dr (n>>•) 
=p__(.•/m +exp(--•/m) -- 1.) (20) ß 

m (•/m 

From Eqs. ( 19 ) and (20), we obtain an approximate expres- 
sion for the deflection of the detector based on A era as 

p2 [•/m + exp( _ •/m) _ l ]2 H(Ae,,,) • m . (21) 
rn (•'/m) 4 

With •,,•/m, we then have 

H(Aem )'•(p2/•)([•m + exp( -- •,,) -- 112/• •}. 
Maximizing this expression with respect to •m, yields that 
the optimum value of •,,is • ,*, -- 2.141926. Hence, an ap- 
propriate choice of rn for fixed • is given by 

1, if g<g* integer nearest to g/g* otherwise. 

Thus we see that the deflection criterion gives us a very 
simple way of determining an optimum m-order noncoher- 
ent detector. This is in contrast with error-probability based 
criteria, for which an optimum value of rn can be determined 
only by simulation. (It should be noted, of course, that rn* 
could be different from the value of rn that yields the nonco- 
herent detector with the smallest miss probability for a given 
value of false-alarm probability and a given value of g. ) 

Substituting the value m = 1 into Eq. (21 ) yields the 
deflection of the standard noncoherent detector based on Ae, 
viz., 

H(A e) =p2{[• + exp(--•)- 112/•'4}. (22) 
Table I lists the deflections of the SND and the m*ND 

relative to that of the optimum quadratic detector, expressed 
in dB (i.e., 10 lOglo of the ratio). It is apparent from the table 
that the m*ND performs substantially better than the SND 
at high values of relative phase bandwidth •. This suggests 
that the error probability performance of the m*ND should 
be much better than that of the SND for significantly drift- 
ing phase. (In the next section, we consider this issue. ) We 
also note that the deflection of the m*ND is within 2 dB of 

the optimum deflection over a very wide range of • values, 
suggesting that most of the performance that can be obtained 
with quadratic detection is achieved by the m*ND. 

Figure 1 shows curves of the deflection of the m ND 
relative to that of the SND versus rn for a few values of•. The 
dependence of m* on • is clear from these curves. Figure 2 
plots the same relative deflection versus • for various values 
of m. We see that all these curves flatten out for large values 
of •. This shows that a given mND performs uniformly bet- 
ter than the SND for all values of• greater than some thresh- 
old value, indicating the robustness of the m ND for large 
values of •. 

IV. ERROR PROBABILITY EVALUATION 

In this section, we compare the error probabilities of the 
three quadratic detectors discussed in the paper. All of these 

TABLE I. Deflections of the SND and the m*ND relative to that of the 

optimum quadratic detector as a function of •. 

Relative deflection (dB) 

• m* SND m*ND 

0.10 1 -- 0.002 -- 0.002 

1.10 1 --0.24 --0.24 

1.32 1 --0.34 --0.34 

1.58 1 --0.47 --0.47 

1.91 1 --0.63 --0.63 

2.29 1 --0.85 --0.85 

2.75 1 -- 1.12 -- 1.12 

3.31 2 -- 1.46 -- 1.28 

3.98 2 -- 1.86 -- 1.33 

4.79 2 -- 2.32 -- 1.44 

5.75 3 -- 2.84 -- 1.52 

6.92 3 -- 3.41 -- 1.58 

8.32 4 -- 4.02 -- 1.63 

10.00 5 -- 4.67 -- 1.69 

12.02 6 -- 5.35 -- 1.72 

14.45 7 -- 6.05 -- 1.75 

17.38 8 -- 6.77 -- 1.77 

20.89 10 -- 7.50 -- 1.80 

25.12 12 -- 8.24 -- 1.81 

30.20 14 -- 9.00 -- 1.83 

36.31 17 -- 9.76 -- 1.84 

43.65 20 -- 10.53 -- 1.85 

52.48 24 -- 11.30 -- 1.86 

63.10 29 -- 12.08 -- 1.87 

75.86 35 -- 12.87 -- 1.87 

91.20 42 -- 13.65 -- 1.88 
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8O 

FIG. 1. Deflection of the mND relative to that of the SND as a function of 

m. Each curve corresponds to a distinct value of • (indicated next to the 
curve). 

detectors compare a quadratic test statistic with a threshold 
r to distinguish between the two hypotheses. Hypothesis H l 
is chosen if the statistic exceeds r, and He is chosen other- 
wise. We use the Neyman-Pearson approach, i.e., we specify 
the false alarm probabilty (Pt), and calculate the thresholds 
that yield this value of Pr for the three detectors. As we shall 
see, the threshold calculation can be done analytically since 
the observation is Gaussian under He. These thresholds can 
then be used in the estimation of the miss probabilities by 
simulation. In this latter analysis, we will omit the optimum 
quadratic detector since the deflection analysis suggests that 

.! 

I I I 

55 

-20 
10 -i 1 10 102 103 10 4 

Relative Phase Bandwidth 

FIG. 2. Deflection of the mND relative to that of the SND as a function of•. 
Each curve corresponds to a distinct value of m (indicated next to the 
curve). 

it performs similarly to the optimum mND, and since its 
accurate simulation is complicated significantly by its infi- 
nite-dimensional structure. 

A. Threshold calculation 

We first consider the false-alarm probabilities of the 
three detectors of interest. 

1. Optimum quadratic detector 

The false-alarm probability for the optimum quadratic 
detector is given by 

Pr -- Po(Aopt > T) -- Po(Aopt/p > r/p). (23) 

Denote by •o(CO) • E{exp ( itoAop t//9)lHo} the characteristic 
function of Aop t//9 under He, and define • rip. Then, from 
Reft 10, we can write that 

1 + 1 fo © sin[/_•o(co) -- co•]dco, P-T T co 
(24) 

where •0•o (co) denotes the argument of 0•o (co). Under He, 

aøpt lfo'fo' • = -- Rs (t,u)dW, dW, 
P P 

= cos[nrr(t- u)] 

Xexp( - • It- ul)dW dW. (25) 

The symmetric kernel exp( -- •lt- u I) has the following 
eigenfunction expansion on [ 0,1 ] 2. 

exp( -•lt- ul) - 5( (t)½• (u). (26) 

The eigenvalues and eigenfunctions are given in Reft 11. In 
particular, we define the sequence {/3•; k = 1,2,...} by 

(k-- 1)rr</3• <krr, k-- 1,2,..., 

and 

cot (/3k/2) =/3k/•e, if k is odd, 

tan (/3•/2) = --/3•/•e, if k is even. 

Then, the eigenvalues of Eq. (26) are given by 

A• - 2•/(• 2 +/3 •. ), k -- 1,2,..., 

and the corresponding normalized eigenfunctions are 

&• (t) 

½•(t) -- 2 •/2' O<t<l, k-- 1,2,..., [ygl& (t) dt ] 
where 

• • (t) = •'/3 F ' sin (/3 • t) + cos (/3 • t), 

o<t<l, k- 1,2,.... 

Substituting Eq. (26) in Eq. (25), we get 

Aopt re' re' cos[nrr(t- u)] 
X •, A•½• (t)•bk (u)dW, dW, 

k=l 

816 J. Acoust. Soc. Am., Vol. 89, No. 2, February 1991 V.V. Veeravalli and H. V. Poor: Quadratic detection 816 

Downloaded 23 Aug 2013 to 130.126.138.40. Redistribution subject to ASA license or copyright; see http://asadl.org/terms



= • A• •b• (t)cos(n•rt)dWt =1 

+ tpk (t)sin(nrrt)dWt . 

[It can be shown that the condition required to interchange 
the integral and the summation above is that 

< m and the validity of this condi- 
tion can easily be verified for Brownian motion. ] 

The eigenvalues A • decrease to zero with order k - 2, and 
hence we can approximate the infinite sum above by a finite 
sum of the first N terms, for sufficiently large N. Also, define 

n• -- ½• (t)cos(n•t)dW•, k- 1,2,...,N 

and 

•o 1 n2k -- •bk (t)sin(nrrt)dW•, k- 1,2,...,N. 

Then, as argued before, for large n, n•, k- 1,2,...,N, and 
n2• , k - 1,2,...,N, are well approximated by a set of indepen- 
dent normal random variables with means 0 and variances •. 
We can thus approximate 

N 

2 //2 Aøpt "-' Z /•'k(//1A + 2k ), 
•o(•) -- E•exp(jwAopt/p) } 

N 

• H g{exp(joAan 2 2 • ) }E{exp ( jwAan2• ) } 
k=l 

N 

= II 
k=l 

N 

k=l 

(27) 

and 

N 

/•o(W) •" • tan-l(wA,•,). (28) 
k=l 

Substituting Eqs. (27) and (28) into Eq. (24), we obtain an 
expression that can be used to calculate the value of • corre- 
sponding to the prespecified false alarm probability. 

2. Noncoherent detectors 

For the mND detector, the quadratic test statistic is giv- 
en under Ho by 

it/ 

Aem -- Z (Nli )2 _3_ (N2i)2, 
i:1 

where, for n >> m, the random variables Nli, i- 1,...,m, and 
N2i, i- 1,...,m are well approximated by independent ran- 
dom variables with means 0 and variances 1/2m. Hence, 
2mAc,, has a chi-squared distribution with 2m degrees of 
freedom. If we denote by 1'2,, (') the distribution function of 
chi-squared random variable with 2m degrees of freedom, 
then 

Pr- Po(Ae,, >r) -- 1 --1'2,,(2mr). (29) 

Thus, we have a relationship between Pr and r, as desired. 

B. Miss probabilities by simulation 

The probability of miss for the detector with quadratic 
test statistic A and threshold r is given by 

P•4 = P•(A <r). 

The closed-form computation of this quantity is difficult in 
the case of a Gaussian signal (see, e.g., Ref. 12), and prohibi- 
tive in the case of a non-Gaussian signal as we have here. 
Thus we estimate the miss probabilities of the two detectors 
of interest (the standard noncoherent detector and the m- 

order noncoherent detector) at various values of •' and p via 
simulation. 

We simulate the observations under H• by generating 
sample paths of the phase drift and additive noise processes. 
For each sample path of the observation process {Y,; 
04t41}, we compute the quadratic test statistics, compare 
these with the threshold values as calculated in the previous 
section, and use a relative frequency count to estimate the 
miss probabilities. This process can be facilitated as follows. 
Under H•, 

10 ̧ 

;10 -1 

•10-3 

10-4 
5 

:- ..... 
: -• 40: 
- . "'20- 

2 Coherent \ : 
•- Filtering • • 

O.O1 • - 
I I I\ I 

10 15 20 25 :50 
Signal-to-Noise Ratio (dB) 

(e) 

lO ̧  

_ 10-1 
• 10- 

-3 

10-4= 

: N%-.N -'-... • '--.-.40: 
__:- N,,N ----...'"- 

_ _ 

! Filtering \'•0.1 'xxxO-5 • • 
- I I O'Op I I - 

10 15 20 25 :50 
Signal-to-Noise Ratio, (dB) 

(b) 

FIG. 3. Miss probabilities of the SND as function ofp for several values of g 
(indicated next to each curve) and for two values of false alarm probability: 
(a) Pt = 10-3 and (b) Pt-= 10-4 
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FIG. 4. Miss probabilties of the m*ND as function ofp for several values of 
• (indicated next to each curve) and for two values of false alarm probabili- 
ty' (a) P• = 10 -• and (b) P• = 10 -4 

Aem- Z cos(nrrt)dX, 
.: t I L\J(i-- I )/m 

(fi/m )2] + sin ( n rrt ) dX, , 
\d( i -- 1 )/m 

where dX,- S, dt + d•,. Substituting directly and ex- 
panding, we get 

Ae m __ • (Sli + Nl t )2 + (s2/+X2 t )2, 
i=1 

where the random variables Sl•, s2•, N•, and N2, are approxi- 
mated assuming that n is large. In particular, 

Sli P cos[O, + •]dt, •d(i-- 1)/m 

fi, m S2i • -- P sin [ O• + • ]dt, 
d(i -- 1 )/m 

and the random variables N•,, i--1,...,m, and N2,, 
i- 1,...,m, are approximated by independent normal ran- 
dom variables with means 0 and variances 1/2m. 

Figures 3 and 4 describe the simulation results. Two 

values of false alarm probability ( 10- 3 and 10-5) were cho- 
sen; and the corresponding miss probabilities for the two 
detectors were estimated for various values ofp and ,e. The 
miss probabilities were estimated using only 10 4 indepen- 
dent trials and hence cannot be expected to be better than 
10% accurate for values smaller than 10-2. Nevertheless, 
the figures do show the trends predicted by the deflection of 
analysis of Sec. III. 

In Fig. 3, we see that for very small values of ,e (i.e., 
negligible phase drift), the SND performs approximately 
0.75 dB worse than the coherent detector with known phase, 
which is consistent with the Well-known result for noncoher- 

ent detection with constant but unknown phase. For larger 
phase drifts (i.e., ,e > 3 ), we observe that the performance of 
the SND decreases drastically as ,e is increased. This is in 
contrast with the performance of the m*ND detector which 
performs reasonably well even at large values of,e. In fact, we 
see that for the range of values of ,e considered, the perfor- 
mance gain in error probability is as large as 10 dB [consid- 
er, for example, the curves for ,e = 80in Fig. 3(a) and (b) ]. 
The deflection analysis is in fact pessimistic in its prediction 
of the performance gain. 

V. CONCLUSIONS 

In this paper, we have considered the problem of detect- 
ing a sinusoid with drifting phase, in the presence of additive 
white Gaussian noise. We have shown that, in the class of 
quadratic detectors for this problem, the m*-order nonco- 
herent detector performs nearly as well as the optimum qua- 
dratic detector when the performance measure is the deflec- 
tion ratio. Also, using the deflection criterion, we have 
derived a very simple way to determine the best m-order 
noncoherent detector. Finally, the analytical and simulation 
results in the paper show that the m*-order noncoherent 
detector promises substantial performance gain over the 
standard noncoherent detector for large values of relative 
phase bandwidth. 

It should be noted that the deflection analysis consid- 
ered here uses only the second-order statistics of the signal 
corrupted by phase noise. Thus the analysis could be easily 
repeated for other phase drift models provided these models 
render the signal wide sense s/tationary and facilitate the 
computation of the signal autocorrelation function. Also, 
the detection problem considered here is relevant in applica- 
tions of detecting acoustic signals under water, where the 
limiting background noise may very well not be accurately 
modeled as white Gaussian noise (see, e.g., Refs. 13-15). 
Thus, the extension of the analysis in this paper to other 
noise scenarios is an interesting topic for further study as 
well. 
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